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Two-dimensional Strain Cycling in Plasticity

by
P. M. Naghdi and D. J. Nikkel, Jr.

. Department of Mechanical Engineering
University of California, Berkeley, CA 94720

3
—t :

Abstract Detailed calculations are presented for strain cycling in a
homogeneous deformation that can be sustained by a biaxial state of stress
in thin-walled specimens of OFHC copper. These calculations are made with
a set of relatively simple constitutive equations within the framework of
the strain-space formulation of plasticity. The predicted theoretical
calculations, carried out in the context of small deformation, are in good
agreement with corresponding available experimental results for saturation
hardening and erasure of memory in two-dimensional strain cycling. Also,
with the use of the calculated results, a scalar quantity that characterizes
strain-hardening is plotted as a function of plastic strains. Such plots
are likely to be useful for computational purposes.
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1. Introduction
In an interesting series of experiments pertaining to two-dimensional strain
cycling in plasticity that can be sustained by a biaxial state of stress resulting
from combined tension-compression and torsion in thin-walled specimens of OFHC
. copperf, Lamba and Sidebottom (1978a,b) observed the following three phenomena:
a) The occurence of saturation hardening after loading from an
undeformed state and cycling along a strain path which is
essentially an ellipse in the normal strain-shear strain plane;
b) the erasure of memory after the material has reached a state of
saturation; and
¢) the nature of the post-saturation stress response for cycling
in a relatively "complex" nonproportional strain path.
With reference to the above two-dimensional strain cycling experiments, our
main objective is ta examine the predictive capability of a (rate-independent)
theory of plasticity formulated in a strain space setting with the use of
special constitutive equations employed previously by Naghdi and MNikkel (1984).
Also, by employing the strain-hardening characterization which arises in the
strain-space formulation of plasticity (Casey and Naghdi, 1981, 1983, 1984a) and
which is represented by a scalar function ¢, we calculate (over the domain of
interest) the values of ¢ for the material used in tae experiments of Lamba and
Sidebottom (1978a,b) and plot this as a function of plastic strains. As in the
experiments of Lamba and Sidebottom (1978a,b), our calculations are carried out

in the context of smail deformation.

+The abbreviation OFHC stands for "oxygen-free high conductivity.”
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In a previous paper (Naghdi and Nikkel, 1984) comparisons were made
between the predictions of uniaxial stress and strain cycling in plasticity
and corresponding available experiments. The previous calculations (Naghdi
and Nikkel, 1984) were carried out in a strain space setting by means of !
special constitutive equations obtained on the basis of a theory first
formulated relative to stress space by Green and Naghdi (1965, 1966) and
subsequently reformulated relative to strain space by Naghdi and Trapp (1975a),
along with some additional developments pertaining to loading criteria and

hardening characterization by Casey and Naghdi (1984a,b).

Oescription of the Strain Cycling Problem

As in the experiments of Lamba and Sidebottom (1978a,b),we consider
the combined tension-compression and torsion of a thin-walled circular
cylinder whose axis is in the x]-direction. As usual, we neglect the varia-
tion of stress and strain in the radial coordinate direction so that the
stress and strain components referred to cylindrical polar coordinates are

then independent of position. We denote the axial stress and axial strain,

respectively, by 1 and ey’ and similarly denote the shear stress and shear
strain, respectively, by $12 and €15-

The analysis in Section 3 and the procedure for calculations in Section 4
require a reduction of the general loading criteria since not all components
of strain (and strain rate) are known a priori in the context of the
particular experiment considered. This reduction is discussed in Appendix A
and the results are employed in all calculations of Section 4. Our

calculations do not include those appropriate for two-dimensional stress

.............
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cycling, even though it is relatively easier to calculate such cycles for

*
materials exhibiting hardening behavior.

In the remainder of this section, we discuss in some detail the main
features of the calculated results. A summary of the calculations can be
arranged in three groups corresponding to the nonproportional strain cycling
experiments of Lamba and Sidebottom (1978a,b) as listed in the opening
paragraph of this section. The first experiment pertains to saturation hardening
after loading from an undeformed state, and the second two concern the behavior
after the material has reached a state of saturation. In each case, the strain
path in the 117812 plane is the input to the probiem, and the stress response
(s]] and 512) is calculated from the relevant constitutive equations. A
graphical presentation of the calculated stres§ trajectory in the $117512 plane
alone does not give all the relevant information, unless a knowledge of the
correspondence between all points of the stress trajectory and all points of the
input strain path in the e11782 plane is also known. It is therefore, necessary
to also plot the calculated results in either the S117€11 ©°F the sm-e]2 plane.
For clarity's sake, we have presented the calculated results in both the S117811

and 5127812 planes.

Saturation Hardening

For two-dimensional saturation hardening, we prescribe en and Y
parametrically as functions of time such that in the €117 plane the

strain path is as depicted in the inset of Fig. 1(a). This

*

This is because for materials exhibiting hardening behavior the loading
criteria in stress space may be used (Casey and Naghdi, 1984b), and for
two-dimensional stress cycling all of the components of stress are prescribed
in contrast to two-dimensional strain cycling where some of the components
of strain are not known & priori.
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corresponds to uniaxial tensile loading from the undeformed state until the
axial strain reaches the value 0.00635 (point Q in Fig. 1(a)) followed by

combined tension-compression and torsion controlled in such a way that ey
and €2 cycle in a counterclockwise direction around the nearly elliptical path in

the inset of Fig. 1(a).§ The strain components ey, and e;, were

parametrically specified to be sinusoidal differing by a 90
degree phase shift. The calculated results for stresses are shown in

Figs. 1{a-c) along with the experimental curves for the first few cycles

only, since the portion of the trajectory for additional cycles would crowd

the figure. Figure 1(a) represents the stress trajectory and Figs. 1(b,c)

are alternative representations of the calculations in the 1178 and 127842
planes. Points corresponding to Q,R,S,T on the prescribed strain path in the
inset of Fig. 1(a) have been labeled in Figs. 1(a-c) only for the portion of
the path which represents a cycle at saturation and not for prior cycles.

These results are in good qualitative agreement with the experimental results
of Lamba and Sidebottom (1978a). In agreement with. the experimental results, the
theory predicts that saturation occurs after about four cycles. The main
differences between the theoretical predictions and the experimental results are
that the predicted maximum shear stress at saturation (point R in Figs. 1(a,c))
is slightly greater than the corresponding experimental value while the
predicted maximum axial stress at saturation (point T in Figs. 1(a,b)) is
slightly less than the corresponding experimental value. The reasons for

these differences are discussed in Section S.

A o e o o

— - -

*The actual experimental strain path in Fig. 3(a) of Lamba and Sidebottom (1978a)
is not perfectly elliptical. In the present calculations the portion of the path
in the upper half of the e,,-e,, plane is specified to be the upper half ot an
ellipse with vertices on the e, axis at -0.00623 and 0.00635 and a semiaxis of
0.00531 in the e, direction. 'The portion of the path in the Tower half of the
e,,-8,, plane is gpecified to be the lower haif of an ellipse with the same
vé}tiéas on the e axis, but with a semiaxis of 0.00588 in the ey direction.
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Erasure of Memory

Consider next the erasure of memory property observed by Lamba and
Sidebottom (1978a) in the case of OFHC copper. The phenomenon
occurs when the material has reached a state of saturation
after strain cycling along an elliptical path in the e117¢12 plane. If
subsequent linear strain paths 1ie within the elliptical strain path (which
was originally used to reach the state of saturation), then corresponding to
a given linear path in the €117€12 plane there is a particular limiting
stress cycle response in the 5117512 plane. This process is repeated as
the material is cycled again along the strain path. Lamba and Sidebottom (1978a)
observed that a larger cycle (not necessarily along a linear path) in the
11782 plane essentially erases the effect of any previously traversed smaller
cycies and returns the material to a state inwhich the 1imiting stress cycle response
corresponds to that of the larger cycle. With the use of the linear strain paths BDB and
BFB (as the largerandsmaller cycles) indicated in the inset of Fig. 2(a),
a calculation leading to a state of saturation was arrived at by first cycling
in shear along B’ Y8’ for four cycles followed by cycling along B/ CD EB/ for an
additional four cycles. Then, the effect of erasure of memory was calculated

by further cycling which altematesalong BDB and BFB. The results of calculations

are shown in Figs. 2(a-c) along with the experimental curves from Lamba and
Sidebottom (1978a, Figs. 5(b,c)), where for clarity only the portion of the
response corresponding to cycling which alternates along BOB and BFB are

indicated.§§ The erasure of memory phenomenon is best seen in Fig. 2(c), where

§§In Lamba and Sidebottom (1978a}, at the point we've iabeled D, the value of
the shear strain shown in Fig. (5a) (the strain path in the axial strain -
shear strain plane) is somewhat different from its value shown in Fig. (5b)
(the experimental results shown in the shear stress-shear strain plane). In
prescribing the strain path for our calculations, in order to compare with
the experimental results we specified the value of the shear strain at point D
to be that indicated in Fig. (S5b) of Lamba and Sidebottom (1978a).




along the segment of path B0 the effect of the path BFB has become undetectable

by the time the trajectory has reached point D. Thus, the larger cycle BDB
erases the material's memory of the previously traversed smaller cycle BFB. In
addition, the overall response is in qualitative agreement with the experimental
results of Lamba and Sidebottom (1978a), while the predicted shear stress is
again higher than tne corresponding experimental results (Fig. 2(c)) and the
predicted compressive axial stress has a larger absolute value than the
corresponding experimental results (Fig. 2(b)). Also, the slope of the
calculated S1p-€yp Curve in Fig. 2(c) during loading along FB is different

than on the corresponding experimental curve. Again, these differences are

discussed in some detail in Section 5.~

Comg]ex Nonproportional Strain—Path“

Now, with reference to the third experiment of Lamba and Sidebottom
(1978b), consider the predicted response for a "complex" nonproportional strain
path (using the terminology of Lamba and Sidebottom) applied after the
material has reached a state of saturation. The state of saturation is attained
in the same way as discussed earlier in the preceding paragraph, namely by
cycling first in shear followed by cycling along an elliptical path in the e-
e, plane. After this, a path was prescribed whjch returned e and e, to the

origin of the e,;-e,, plane (point 0 in Fig. 3(a)) while at the same time

*
the plastic strains were returned to the value zero. Next let e and es be

*This calculation was performed by prescribing a path unloading from the elliptical
path at a point such as B' in the insert of Fig. 2(a) onpwhich e,1=0 and a11oying
reverse loading to take place until such a point where e7,=0. At lhis point ela has

e-

also become essentially zero which is again indicative o}zerasure of memory.
versing the direction along this path until point 0 in Fig. 3(a) is reached
results in only elastic behavior.




prescribed parametrically as functions of time such that in the 117812 plane
the strain path is represented by the linear segments 0-1. 1-2, 2-3, . . ., 7-8
in the inset of Fig. 3(a). The calculated results for stresses are shown in
Figs. 3(a-c) which qualitatively agree well with the experimental results of

' Lamba and Sidebottom (1978b, Figs. 2(a-d)). Moreover, the theory again predicts
the erasure of memory effect since as the path 0-1,..., 7-8 in the inset of
Fig. 3(a) is traversed a second time, the stress path becomes indistinguishable
from the first time the path was traversed. Thus, the larger path 6-7-8 erases

the effect of the previously traversed smaller portion of the path 1-6.

Strain Hardening Behavior - The Function 3

In view of the fundamental role played by a scalar function ¢ that
characterizes strain-hardening behavior of the material (Casey and Naghdi, 1984a),
we represent ¢ as a surface which exhibits the nature of strain-hardening at any
elastic-plastic state with fixed values of the total strain components e and @0
The surface in Fig. 4 is a plot of ¢(defined inEq. (2.10)) as a function of the
plastic strains e?l and egz for fixed values of the total strains p and e
prescribed in the course of calculations; in the plot of Fig. 4 the prescribed
total strains are specified to be e]1=e12=0. For different values of ey and e,
the surface represented by ¢ merely translates parallel to the plane of egl-e?z.
A choice of the total strains, say (Ei1’312)’ speci}ies a particular surface
and elastic-plastic states reached by different strain paths ending at (3}1,5}2) will
in general correspond to different points on the surface . The outer boundary of this
surface (which has the smallest value of &) corresponds to the state of saturation, while

the inner boundary corresponds to the largest value that p can take in the domain

¥A topographical representation of this kind was used recently in a different
context by Casey and Lin (1983).




of interest. A further discussion of how the surface was calculated is found at

the end of Section 4. As is evident from the plot in Fig. 4, ¢ is always

positive; and hence, in view of the conditions for strain-hardening characterization
(see for example the conditions (8) in Naghdi and Nikkel, 1984), the material

always exhibits hardening behavior.+ It also shows how & decreases with additionel

plastic deformation, taking its largest value at initial yield and its smallest

value at saturation. The value of ¢ is constant at both initial yield and

saturation.

+It should be emphasized that even though one component of the stress may be ,
decreasing during loading while the corresponding strain component is 1
increasing (e.g., as in Fig. 2(b)) the material is not exhibiting softening
behavior in two-dimensional cycling.
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2. General Background and Special Constitutive Equations

With reference to a strain-space formulation of piasticity and for
the special constitutive equations used previously (MNaghdi and Nikkel 1984),
we include here a brief summary of the relevant equations of the purely
mechanical theory contained in the papers of Green and Naghdi (1965, 1966),
Naghdi and Trapp (1975a) and Casey and Naghdi (1981, 1983)T.

In the context of infinitesimal deformation, we recall that the
main ingredients of the rate-type theory of plasticity, in addition to the
total strain e » are plastic strain eEL and a measure of work-hardening .
Also, no distinction needs to be made between various measures of stress

which we denote by s As usual, it is convenient to express the various

KL®
constitutive response functions in terms of the components of deviatoric

stress T, and deviatoric strain Yo namely

T T SkL TS Sk Wk T O o
_ (2.1)
T Tk T @ % 0 =0 o

with a similar definition for the deviatoric plastic strain YEL’ where
S, € and e” denote the mean normal stress, mean normal strain, and mean
normal plastic strain, respectively. For materials which are isotropic
in reference configuration and in the presence df nplastic incompressibility
(eP = 0), we specify the stress response by generalized Hooke's law and the

loading functions g and f in strain space and stress space, respecitvely, by§

T . , .
?13%23 expanded summary is contained in Sections 2 and 3 of Naghdi and Nikkel

§T‘ne loading functions in(2.2)with & being regarded as constant (rather than a
function of «) were used in the paper of Caulk and Naghdi (1978) and, with &
as a function of «, are the same as those used by Naghdi and Nikkel (1984).
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= 2 - &gK! p e & KJy. 0
g = 4y, -+ W RRITL +-—(—L4u Y] <
= (1 -+ aleND Nty - alc)yR, ) - x = f (2.2)
KL~ 2 KL’V KL~ 2 YKL :
with
(a. - a )k +axk. - acx
&=afk) = 2> ——20 03 (2.3)
‘ o s
In(2.2) and @.3) the coefficients o), a, .k, k, are constants and u is the
elastic shear modulus. The constants @, and a are so chosen that &(<) takes
the value a, when « = Ko and takes the value ag when k = Kg-

We adopt the loading criteria of strain space as primary. Then,
after invoking the work assumption o€ Naghdi and Trapp (1975b), the
constitutive equations for the rate ~f plastic strain éEL and the rate of
work-hardening parameter < may be expressed as (see the development among

Eqs. (36)-(42) in Casey and Naghdi 1981):
0, when g <0, or when g = 0 and § <0,

IR D - (2.43,b)
I'EK(ZTKL -ayg ! » wheng = 0Oand g > 0 M
and
K = (é(K)TKL + ?\(K)YEL)éEL . (2.5)
In 2.4) and 2.5), the quantities @ * are defined by
BeBl) = (=S98, Ak = (=S, (2.6)
Ko™s “o™s .
B,n are ccnstants,
g- 321(1_ G = Mulrg -8 Ve (2.7)
and on the yield surface g = C,
A=8x >0, (2.8)

Q

Y- ,
< on 0 %s X P P A o
F= a2l (o) g 2 v g i) (2 i) - (2.9)
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The yield function f in (2.2) is of the von Mises type: it is quadratic
in the deviatoric stresses and allows for translation and change in size of
the yield surface. The amount of translation of the yield surface is linear in
the deviatoric plastic strain and is also linear in « through the coefficient
a defined by (2.3). Also, the coefficient functions B(x) and fi(x) which occur in
(2.5) are linear in «, they assume the respective values 8 and n at initial yield
when « = <., and both vanish at saturation, i.e., when « = «, = 0.

We also recall here that the strain-hardening behavior may be characterized
by means of a rate-independent scalar quantity denoted here by ¢ (Casey and
Naghdi, 1981, 1983)? During loading the quantity ¢ has the same value as %/5,
where ¥ = (3f/3sy, )$,, and § is defined by (2.7);. With the particular

constitutive equations (i.e. generalized Hooke's law) used here and the work

assumption of Naghdi and Trapp (1975b), ¢ can be expressed as

¢ = (2.10)

and in fact since I' +A >0, T alone may be used to characterize the

strain-hardening behavior (Casey and Naghdi 1984b, Eqs. (4.50) and (4.51)).

It was demonstrated recently by Casey and Naghdi (1984a, Eq. (3.8)) that

the quantity ¢ is equal to the determinant of a certain rate-independent )
fourth-order tensor which plays & fundamental role in the theory of plasticity
and which arises naturally in relating the time rate of stress to the time rate
of strain.

11
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Equations for a Two-Dimensional State of Stress

Consider now the homogeneous deformation of an elastic-plastic
material sustained by a biaxial state of stress (one normal component and
one shearing component) in which the corresponding two components of strain
are prescribed functions of time. Lamba and Sidebottom (1978a,b) modelled
this experimentally by performing a strain-controlled combined tension-
torsion test of a thin-walled circular cylinder in which the axial strain
and the shear strain were prescribed functions of time. With the notation
511(t) for the axial stress and 512(t) for the shear stress, the two-

dimensional state of stress can be represented in matrix notation as

lre ll = 3sqq Mo liespllag I 5=3s, (3.1)

where the constant matrices L and bKL defined by
la | ‘ ? 1 0[ I 200
a = R b = -
= Jioe] o+ lmgt=foaof (3.2

are introduced for convenience.

The intended calculations require prescribing e and e parametrically
as particular functions of time (which specify a path in the €11°€12 plane),
while the other two components of normal strain (e22 and e33) remain so far
unspecified and hence unknowns. Since égz = égé =-%ég1 and éq3 = ég3 =0
by 2.4 and 3.1), it follows that the plastic strain tensor can be expressed

in the form

q] 1Okl +e?2 Hagdl - (3.3)

where e?l and e?z depend only on time. From the stress response (generalized

Hef i = NvBll =2

Hooke's law) we have
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where E is Young's modulus. From the inverted form of the stress response,

as well as (3.3 and (3.4),, and after adopting the notation e = e,, = e,,
we obtain
€9 &2 0
lleg Il = |ieys e 0 (3.5)
0 0 e,
where
=..2 -l p T - ‘] - p
e, ES1177 vey 5(] Zv)e” (3.6)

and where v = (E-2u)/2u is Poisson's ratfo. Equation (3.6) relates the
unspecified components of strain to the axial strain (which is known) and the
axial component of plastic strain. But e. is still unknown, inasmuch as e?]
remains unknown until all of the constitutive equations pertaining to a
particular two-dimensional strain path have been integrated.

In order to simplify some of the expressions that follow, we introduce

the abbreviations
M=s . -3a(k)el, , N=s, -+a(x) e (3.7)
174 1§ I s b 12 - :

Then, with the use of (3.1) to(3.6), the loading functions in(2.2)now assume
the simplified forms .

g = %'Ezte]]'(] "’%%)8?112*3142(812'(1 +'4%)e?2]2’|< ’

Fadlean? o . (3.8)
For the two-dimensional state of stress defined by 3.1), A is still given

by 2.8); but, on the yield surface, [ in (2.9)now assumes the special form
%5~ %s

PP | p p 3a.P ~ P
[ =<+ 3[l+(KO_KSXMe”+2Ne]2)][M(5s”+-2qe”)+ N(Bs,,+el,)]. (3.9)

In view of 3.7, 3.3, and (3.9, from 2.7) the quantity § occurring in the

loading criteria in strain space is given by
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(3.10a,b)

.

u

4 4 «p
§EMé”+8uNé]2 +§(3L1'E)Me~” ,

and the corresponding quantity f in stress space is

U . :
f =gy, + sy, , (3.11)

where in obtaining(3.10b) the time derivative of (3.6) has been used. It
should be noted that J depends on the unspecified strain rate ér (or the
unknown axial plastic strain rate é?]); and hence the determination of
whether the state of strain at an elastic-plastic state is undergoing loading,
neutral loading, or unloading cannot in general be ascertained directly from

(3.10).

Since during loading the constitutive equation{2.4b) for the plastic
strain rate :zontains § on its right-hand side, in view of(3.10b) it is at
once obvious that ég] occurs on both sides of the equation in the case of
axial plastic strain rate. After solving this equation, a new form of the
constitutive equation results which depends only on the specified strain
rates é]] and élZ’ This equation then enables the constitutive equations
for the other components of plastic strain rate to be expressed in terms of
only én and &;, also. This procedure along withB3.1) and (3.3) leads to the
following expressions for the non-zero plastic strain rates during loading

(g=0, 3>0)

op =
e

Wi
ol

= P 2N 4 P 24P o _1,4P 12
§ » eI s eyt -zéy (3.12)
where we have introduced the quantities Q and § defined by

Q=T +A - 19§(3u-E)M2 (3.13)

and




= 2 a_ 4 _eymsP 24
3=3 3(3u E)Me]] EEMé]]+-8uNé12 . (3.14)

It is shown in Appendix A under the assumption that Q > 0 always, which
represents a range of strain-hardening behavior sufficiently general for
our present purposes, that a knowledge of only the prescribed strain
rates é;; and é,, is sufficient to determine whether the material at an

elastic-plastic state is undergoing loading, neutral loading, or unloading.

In fact, with Q > 0 the quantity § may be used in special loading criteria

appropriate for the particular problem under discussion. Thus, with Q > 0,

the constitutive equations for the plastic strain rate and the rate of work-
+

NS an el canara o om o

hardening may alternatively be expressed as

0 , ifg<0, (a)
0 ,ifg=0and §< 0, (b)
p = I ’ (3.15)
®kL 0 ,ifg=0and =0, (c) '
£q.{3.12), ifg=0and § >0, (d)

and
: < (3 32aP yaP 3 ~oP yaP
K = (Bs”+2 ne]])e]] + Z(Bs]2 +r1e]2) €, (3.16)

where the loading criteria in(3.15$.B,c;d)correspond, respectively, to an
elastic state, unloading froman elastic-plastic state, neutral loading at an
elastic-plastic state, and loading at an elastic-plastic state.

We note that during unloading and neutral loading it follows from (2.4a),
(3.4), (3.10b) and (3.11) that § = § = ¥, while during loading from (3.4)
and (3.11) to (3.14) we have

?=—B_§=[‘I‘+A§’(9=Oag>o) . (3.17)

Twe emphasize that the loading criteria in (3.19 derived from the general

form of the strain space loading criteria, and not postulated in an ad
hoc fashion. -
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Results from the general theory similar to these and those obtained in

Appendix A are summarized in Table 1 of Casey and Naghdi (1984c).

Before closing this section, we need to comment further on the
restriction Q > 0 which bears on the loading criteria in (3.19. With
reference to (3.13), since I' may be used to characterize the strain-hardening
behavior, with@.8) and(3.8) the condition Q > 0 may be seen to include hardening

behavior (¢>0) and perfectly plastic behavior ($=0), but at first sight may
appear to exclude a small range of softening behavior. $ However, it can

be shown (Appendix A) that at an elastic-plastic state with Q < 0, the
applied strain rates é” and é-l2 can only be such that § < 0. But the
expression (3-14)2 which occurs in the loading criteria(3.15)must be capable
of admitting all possible choices of éH and élz ( and hence capable of
taking both positive and negative values) for all physically realistic
tests. Since a state corresponding to ‘Q <0 is unqecessarily restrictive,

it will be excluded from consideration in the present development.

§l’his is because the condition Q > 0 places a greater restriction on ' than
does the more general result I + A > 0 (which is a consequence of the work
assumption of Naghdi and Trapp, 1975b).
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4, Determination of Material Constants. Details of Calculations.

Previously a procedure was suggested for determining the material
coefficients in the constitutive equations from the experimental data
in a uniaxial cyclic loading test (Naghdi and Nikkel, 1984). This
procedure is by no means unique; and, in fact, for data obtained from one-

dimensional tests, other than uniaxial cyclic tests, it may be desirable

LR/ A At

to use a different procedure. Such alternative procedures are likely to be
more advantageous in two or three dimensional tests. With reference to
their experimental results for OFHC copper, Lamba and Sidebottom (1978a)

note that the peak axial stress attained after the material has been cycled

along a strain path such as that in Fig. 1(a) is significantly higher than
the peak axial stress attained after simple uniaxial cycling. They go on to
state that this difference indicates that ". . . material properties
obtained from tensile tests or even uniaxial cyclic tests will not give
accurate predictions of cyclic deformation under nonproportional or out-of-
phase conditions."* A conclusion of this kind cannot be made independent of

a particular theory used and does not follow from the knowledge of only a

. part of the experimental measurements (e.g., a part of the measurements that

g Teads to the calculated 511). Rather, it requires a detailed examination of
’ the entire experimental data in conjunction with the relevant constitutive
equations.

. As can be seen from (3.7)] ’ and(3.8)2 with « =k ¢,a(k) =a_ and with =0,

the expression for K in a two-dimensional cycling test depends on $11° S12°

e?], e?z as well as &='as. However, the expression for Kg in the case of a

a "peak" axial stress (i.e., the value of 1 when S12 © 0) will depend only

on the axial stress 1 in addition to other parameters such as ag and the

*

The term out-of-phase refers to the specification of e,, and e,, as sinusoidal
functions of time with the 90 degree phase difference gétween lﬁem, resulting
in an elliptic path in the €11-€12 plane.

. 17
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plastic strains. We further observe that in the biaxial tests under discussion

the value of the parameter «_, which represents the size of the loading surface

s
in two-dimensions, is particularly sensitive to the values of the stresses but
much less so to the values of ag and the plastic strains. In view of the
experimental result of Lamba and Sidebottom (1978a) mentioned 1in the previous
paragraph, if K is determined from uniaxial cycling data alone, then the
theoretical prediction for the two-dimensional cycling experiments may not be

as accurate as when Kg is determined from the entire experimental data of a
two-dimensional strain cycling test.

We keep the foregoing discussion in mind when describing the alternative
procedure for determining the material coefficients in the constitutive
equations. A value for Kg will be determined from two-dimensional strain
cycling experiments. For our present purpose, it will suffice to determine
the other constants from uniaxial cycling data as before.f Thus, a value for
<4 follows from f=0 and the yield stress in uniaxial tension, and a value
for ag can be determined from the slope of the uniaxial stress strain curve
at saturation. By selecting a point at saturation from the experimental data
for a two-dimensional cycling experiment, similar to points Q, R, Sor T
shown in the calculated results in Figs. 1(a-c) ‘and with the values of stress
and plastic strain at such a point of value for Ko Mmay be determined from f=0.

We took the value «, to be the average of the values obtained from points R and T,

in order to have the best overall prediction for all loadingpaths in theen-e]2 plane.

The remaining constants may then be determined from the uniaxial cycling data
by the procedure described previously (Naghdi and Nikkel, 1984). Using the
above procedure with the experimental data of Lamba and Sidebottom (1978a,

Figs. 2 and 3(a-d)) for OFHC copper the material constants were determined to

TIn contrast to «_, for the relatively simple constitutive equations used here
the determinatioﬁ of the other constants from the uniaxial tests seems to be

adequate.

------
..................




a
2 = S = 8.]4x]0-3 ’ 'B-=2.30x10- ’ ﬂ—='9'38x]0-5 *
3 E E2

0. -8 s . -6 -
—==4.03x107° ?-1.93“0 , FT0.374 (4.1)

E =115 GPa
In the course of identifying values for the coefficients ay and ag s it was
found that their values differed only by less than 0.3%. This suggests that
if this difference can be neglected, we could set a = ag approximately and
then the coefficient n in@.5) and 2.6)will no longer require an independent
identification. This would make the task of determination of the coefficients
much easier; and, in fact, with a, = ag the coefficient n can be determined in
terms of e, and 8. To see this, we recall that in the special case in which
@, =as = a (say) the constitutive equations used here reduce to a special case
of those employed previously by Caulk and Naghdi (1978, Eqs. (40), (56) and (70)]).

For their equations, they obtained the restriction n= -%as (see Eq. (70)'2 in Caulk and
Naghdi, 1978). Inview of the fact that the values determined for e, and ag are essen-

tially the same, for the purpose of comparison with the experimental data of Lamba and

Sidebottom (1978a,b) for OFHC copper, it will suffice to take ao = as and

_ ] .
n = -8

The calculations summarized in Section 1 were carried out by first
parametrically specifying the strains e and ey, as functions of time,
corresponding to a particular path in the e117812 plane. The constitutive
equations (3.15) and (3.16) were then integrated numerically with the values (4.1)
for the coefficients. Finally, the stresses were calculated using (3.4).

To calculate ¢ in (2.10), a knowledge of A in (2.8) and I in (3.9) is

needed., The particular representation of I' in (3.9) depends on the stresses,
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as well as the quantities M and N which also involve the stresses sn and 512‘
Then, in view of (3.4), T may be expressed in terms of the total and plastic
strains. It follows that ¢ depends on total and plastic strains, as well as on «.
But, from the fact that on the yield surface g = 0 with the function g given by
(3.8)], it is possible to solve for « in terms of the other gquantities so that

¢ may be represented as a function of only €11 8100 eq], and e?z. It is of
interest to plot the variation of ¢ with plastic strains for fixed values of

e and €2- After making the substitutions indicated above, the dependence

of ¢ on the total and plastic strains may be expressed in the form

ao “] ¥

=3 (eP 30 P . ~0y-1
o=0(ely - (1+g ) eqqseqy - (Trg) o) (4.2)

For definiteness, we specify e]] = e, T 0 and then calculate the value of

q], eqz pair. The resulting plot using the values (4.1) is

¢ for each e
shown in Fig. 4. It is clear from the arguments of the function % in

(4.2) that this single calculation provides all of the relevant information
on the variation of ¢; and, for any other specified values of en and €199
the surface plotted in Fig. 4 will not change in shape but will simply
translate parallel to the e?l - e?z plane by the constant amounts

(4.3)

3 %,-1 %5y =1
+zg) ey » O4g) ey

in the e?l and e?z directions respectively, It must be kept in mind that
the domain in the eq]-eﬁz plane must be such that the value of « corresponding

to the values of €11 €00 eg] and e?_ is between %o and Kge In Fig. 4 the

12
outer boundary, with the smallest value of ¢ corresponds to x = Kg and the
inner boundary, with the largest value of ¢ corresponds to «x = Ko It should be

mentioned that some elastic-plastic states corresponding to paints on the surface
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may not be reached by any path. For example, on the inner boundary in Fig. 4,

where « = Ko? the plastic strain is nonzero indicating some plastic deformation

must occur to reach an elastic-plastic state corresponding to this edge of the
surface. However, after plastic deformation has taken place k cannot have the

value Ko (the valv of « at initial yield) while the material exhibits hardening

behavior except in the special case of purely kinematic hardening. Thus, for the

plot displayed in Fig. 4, no actual elastic-plastic state corresponding to the

inner boundary of the surface can be reached.




5. Concluding Remarks

In summary, a relatively simple set of constitutive equations is used to
predict various phenomena occurring in two-dimensional strain cycling in the
range of small deformation. The calculated predictions are compared with
corresponding experimental results of Lamba and Sidebottom (1978a,b) with
good qualitative agreements. It is noteworthy that even during the post-saturation
behaviour of the material, the constitutive equations used have adequate predictive
capabilities as demonstrated by the results in Figs, (2(a-c)) and Figs. (3(a-c)).
Also, it may be emphasized that the theoretical calculations successfully predict
the erasure of memory phenomenon which has significant practical utility in two-
dimensional, post-saturation strain cycling experiments, Ciear]y, by exploiting
this phenomenon, the response of a material to strain cycling along strain paths
in different directions can be determined by performing experiments on one specimen
if a large cycle which erases the material's memory of the preceding smaller cycle
is traversed after each smaller cycle.

The main differences between the present calculations and the experimental
results can be attributed primarily to the manner of identification of two of the
material constants at saturation, namely Kg and ag. These values can be chosen
to be the same as those identified either from experiments in simple tension
(e]2 = Q) or experiments in simple shear (e]1 = 0), . The values resuiting from
experiments in simple tension can lead to discrepancies in matching experiments
involving mainly simple shear (such as those in Figs. (2(a-c)) and (3(a-c)), and
likewise values chosen from experiments in simple shear will affect the agreements
between the theoretical and experimental results in simple tension. The choice for
the value of the constant ks used in the calculations (for details see Sec. 4)
was motivated by a desire to obtain the best overall agreement with experimental
results for all directions of the strain paths in the 117817 plane. Similarly,
as noted in the last section, a

was chosen to be equal to a. in order to simplify

S 0
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the identification of the material coefficients for OFHC copper. The slope of the
calculated response curve in the $12°€12 plane at saturation can be shown to
depend to some degree on agy SO that if a more accurate prediction of the slope of
the curve during loading along FB in Fig, 2(c) is desired an alternative procedure
for determination of ag could be used.*

The plot displayed in Fig, 4 contains detailed information pertaining to
strain-hardening behaviour for the particular material used in the experiments
of Lamba and Sidebottom (1978a,b], Accessibility to such information or the data
representing ¢ for all values of total and plastic strains in the domain of
interest is clearly of value in analyses and computations, It should be possible
in principle to determine the value of ¢ directly from experiments. Casey and
Naghdi (1984b, Eq. (4.29])] have previously shown that the function ¢ can be
interpreted in terms of the ratio of the outward rormal velocities of the yield
surfaces in stress space and in strain space. It is suggested that future
experimenters provide direct measurements concerning the yield surfaces in bath
stress space and strain space and also consider the possibility of obtaining the

values of ¢ directly in the course of their experiments.

We close this section with some remarks concerning additional experimental
data on two-dimensional cycling that have become available very recently.

*
In addition to the two elastic constants, there ar2 six material constants

(“o’as’s’n'<o’Ks) which must be determined from experimental results. However,
for the special case in which ag = ag 23S utilized in Section 4, an additional
restriction cbtaired by Caulk and Naghdi (1972) can alsc be invoked and this
reduces the number of independent constants to be determined to the four
(ao‘S’Ko"s)' With o # o, the calculations will involve more complex
expressions and plots (for different values of e]],elz)of the function ¢ will
exhibit changes in shape and will not simply represent translations of the

surface parallel to the 3?1'9?2 plane as in *he case when a, = -

23




McDowell (1985) has reported experimental results for two-dimensional strain cycling

of a type simi]ar to those of Lamba and Sidebottom (1978a,t); and in principle,

similar comparisons can be made with his data. However, the data provided in McDowell's

paper are insufficient for the identification of all of the material constants

§

appearing in the constitutive equations used here.” Also, it should be noted that our

approach for theoretical predictions differs from the "two surface stress space
model" used by McDowell (1985) for comparison with his experiments,

Ohashi et al. (1985) have reported scme experimental data for two-dimensional
stress cycling. They do not discuss any theoretical predictions for comparison
with their experiments, While in principle, there should be no difficulty in making
such comparisons, the data provided is again irsufficient for the identification of

all of the material constants appearing in the constitutive equations used here.+

Acknowledgement. The results reported here were obtained in the course of
research supported by the Solid Mechanics Program of the U.S. foice of Naval
Research under Contract N0O0014-84-K-0264, Praoject NR 064-436 with the
University of California, Berkeley.

SMcDowell's paper (1985) does not include the data for uniaxial strain cveling needed
for the identification of material constants in the context of the procedure used here.

*ohashi et al. (1985) do not perform any uniaxial strain cycling tests. The data
from such tests are necessary for identification of most of the material constants
using the procedure summarized in Sec. 4.
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Appendix A

We include here the details of the arguments which demonstrate that
the special loading criteria in(3.15) with § (rather than 3) are consistent
with the loading criteria of the strain-space formulation, i.e., at an

elastic-plastic state with Q > 0 we establish the correspondence

§<0 <= g<0 , (unloading),
§=0 <= §=0 , (neutral loading),
§>0 <= §>0 , (loading) .
We first prove that at an elastic-plastic state withQ #0, § =0
if and only if § = 0. Sufficiency follows from(3.12),where if § = 0 so is

éEL = 0 and then from@.14)3 = 0 also. To establish necessity suppose
+hat § = 0. It then follows from@.4 and 3-14 that § = 0.

In view of the result of the previous paragraph note that at an
elastic-plastic state with Q # 0, § # 0 if and only if § # 0. We now
prove that at anelastic-plastic state with Q >0, § > 0 if and only if
§ > 0. To establish sufficienty suppose that § > 0. If § < 0, then éEL= 0
by (2.4) and (3.14) implies § = §, which is a contradiction and hence
we must have § > 0. To establish necessity, we-suppose that § > 0, and
this implies that § = 3(T +A)/Q from (3.17). In view of the fact that
T +A >0 (Casey and Naghdi, 1984b, Eq. (4.50)) and the fact that we are
considering only the case in which Q > 0 this implies § > 0.

As a consequence of the results of the preceding two
paragraphs, it follows that at an elastic-plastic state with Q > O, g<o0
if and only if § < 0.

In the remainder of this appendix we demonstrate that if Q in (3.13) is
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nonpositive at an elastic-plastic state, i.e., if Q < 0, then the applied
strain rates é]] and é]2 can only be such that § < 0.

We first prove that with Q < 0 we can only have § < 0. Suppose § > 0.
If §<0, then®.4 and 3.14 imply § = § which is a contradiction.
Alternatively if § >0, then § = §(I' +A)/Q from (3.17). In view of the
fact that '+ A > 0 (Casey and Naghdi, 1984b, Eq. (4.50)) and that we are
considering the case in which Q < 0, it follows that § < 0 which is also a
contradiction. Hence, we can only have § <0 if Q < 0.

Next, we prove that ifQ=0, we can only ha?e g < 0. Again, suppose that
§>0. If§<0, then@.9 and@.14) imply § = § which is a contradiction.
Altermatively, if § > 0, with the use of the expression for § resulting from
(3.14)1and the identity resulting from@.13 after setting its left-hand side
equal to zero, the constitutive equation for the axial plastic strain rate
from(.4b) implies § = O which is also a contradiction. Hence we can only

0.

have § <0 if Q =
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Captions for Figures

Fig. 1{a)

Fig. 1(b)

Comparison of the stress trajectory in S11°512 plane (measured in
MPa) between the theoretical prediction (—) and the exper-

imental data (- - ~) from Lamba and Sidebottom (1978a) for

OFHC copper; the numerical calculation of the theoretical

trajectory was effected with the use of (3.4), (3.15), (3.16) and the
constants (4.1). The prescribed strain path in the 1172
plane is shown in the inset. After initial elongation from
the undeformed state to point Q, the nearly elliptical path
QRSTQ is repeatedly traversed. While the path in the e117¢12
plane is cyclic, the remaining nonzero components of strain
do not necessarily return to the same values at the end of
each cycle, Comparison with the experimental data is shown

for the first few cycles only, since the portion of the

trajectory for additional cycles would crowd the figure.

Comparison of the theoretical (—) axial stress response,
measured in MPa, with the corresponding experimental data

(- - =) of Lamba and Sidebottom (19;8a) for OFHC copper

according to the prescribed strain path in the inset of Fig. 1(a).
Comparison with the experimental data is shown for the first

few cycles only, since the portion of the curve for additional

cycles would crowd the figure.




Captions for Figures (continued)

Fig. 1(c)

Fig. 2(a)

Fig. 2(b)

Comparison of the theoretical (—) shear stress response,
measured in MPa, with the corresponding experimental data

(- - =) of Lamba and Sidebottom (1978a) for OFHC copper
according to the prescribed strain path in the inset of

Fig. 1(a). Comparison with the experimental data is shown
for the first few cycles only, since the portion of the curve

for additional cycles would crowd the figures.

The theoretical stress trajectory in $11°512 plane (measured in

MPa) calculated from (3.4), (3.15) and (3.16) for OFHC copper using the
constants (4.1). The prescribed strain path in the 117812 plane is
shown in the inset. Calculation for a state of saturation was
obtained by first cycling in shear along B'D'B' in the &11°¢12

plane for four cycles followed by cycling along the elliptical

path B'CD'EB' for four cycles. After this saturation was attained,

the smaller path BOBFB was repeatedly traversed. Only the portion

of the stress trajectory which corresponds to the (post saturation)

strain path BDBFB is shown. -

Comparison of the theoretical (——) axial stress response,
measured in MPa, with the corresponding experimental data (- - -)
of Lamba and Sidebottom (1978a) for OFHC copper according to the
prescribed strain path in the inset of Fig. 2(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path BDBFB is shown.




Captions for Figures (continued)

Fig. 2(c)
Fig. 3(a)
Fig. 3(b)

Comparison of the theoretical (—) shear stress response,
measured in MPa, with the corresponding experimental data (- - -)
of Lamba and Sidebottom (1978a) for OFHC copper according to
the prescribed strain path in the inset of Fig. 2(a). Only the
portion of the stress response which corresponds to the (post

saturation) strain path BDBFB is shown.

Comparison of the stress trajectory in 117512 plane (measured

in MPa) between the theoretical prediction (—-) and the
experimental data (- - -) from Lamba and Sidebottom (1978b) for
OFHC copper; the numerical calculation of the theoretical
trajectory was effected with the use of (3.4), (3,15), (3.16) and the
constants (4.1). The prescribed strain path in the 117812

plane is shown in the inset. Calculation for a state of
saturation was obtained in a similar manner to that in Fig. 2(a).
After the saturation was attained, the complex path 0-1, 1-2, ...,
7-8 was repeatedly traversed. Only the portion of the stress
trajectory which corresponds to the-(post saturation) strain path

0-8 is shown.

Comparison of the theoretical (——) axial stress response,
measured in MPa, with the corresponding experimental data (- - -)
of Lamba and Sidebottom (1978b) for OFHC copper according to the
prescribed strain path in the inset of Fig. 3(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path 0-8 is shown.
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Captions for Figures (continued)

Fig. 3(c)

Fig. 4

Comparison of the theorctical (——) shear stress response,
measured in MPa, with the corresponding experimental data (- - -)
of Lamba and Sidebottom (1978b) for OFHC copper according to the
prescribed strain path in the inset of Fig. 3(a). Only the
portion.of the stress response which corresponds to the (post

saturation) strain path 0-8 is shown.

A geometrical representation of the function ¢ (which characterizes
strain-hardening) as a surface exhibiting its dependence on the
plastic strain components e?] and e€2’ plotted for fixed values
of the total strains (in this figure taken to be e]1=e12=0) for
OFHC copper having the material constants specified in (4.1),
For different values of €1 and 7Y the surface merely translates
parallel to the plane of'(e?], egz) but does not change its shape.
An example of how the value of ¢ may be determined from this
plot is also indicated: At a typical point on the surface, the

P

values of the plastic strains e?l. ey, are known (the coordinate

curves on the surface are drawn at plastic strain intervals of

p
1

located. Then, the value of ¢ is measured by comparing the

0.0002) and the corresponding point in the eﬁ]-e 2 plane is

vertical distance between the point on the plane and the point

on the surface with the scale on the ¢ axis.
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